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Abstract—The vortex instability characteristics of laminar boundary-layer flow in natural convection on
inclined flat plates heated from below, under the variable surface temperature 7,(x)—7, = Ax", are
studied analytically by the linear theory. The analysis is performed by using the non-parallel flow model
in which the steady main flow is treated as two-dimensional and account is taken of the streamwise
dependence of the disturbance amplitude functions. Neutral stability curves as well as critical Grashof
numbers and the corresponding critical wave numbers are presented for fluids having Pr = 0.7 and 7 over
the range of inclination angles, 0° < ¢ < 70° from the horizontal, for a range of the exponent values #
from —1/3 to 1. For a given Prandtl number and a given exponent value n, the flow is found to become
more stable to the vortex mode of instability as the inclination angle increases from the horizontal. In
addition, the local non-similarity non-parallel flow model provides a larger critical Grashof number than
that of the local similarity non-parallel flow model. Results from the present non-parallel flow analysis are
compared with previous results from the parallel flow analyses and with available experimental data. The
streamwise dependence of the disturbances leads to a stabilization of the main flow, which brings the
present predictions to a close and qualitative agreement with available experimental data.
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INTRODUCTION

A FLOW pattern, laminar or transitional or turbulent,
strongly affects the thermal transport process in con-
vective heat transfer. For this reason, the study of
flow instability or transition is of primary importance.
Extensive experimental and analytical studies on the
instability of natural convection flow over inclined,
upward-facing heated surfaces have been performed
(see, for example, refs. [1-15]). The instability of the
flow that occurs as the result of a secondary flow in
the form of longitudinal vortex rolls is due to the
presence of a buoyancy force component that acts in
the direction normal to the plate. From the exper-
imental work of Lloyd and Sparrow [2} on natural
convection flow in water over inclined heated plates,
it was found that for inclination angles less than 14°
from the vertical, the instability is characterized
by the Tolimien~Schlichting wave mode, whereas the
instability is characterized by the longitudinal vortex
mode for inclination angles larger than 17° from
the vertical. In the range between 14° and 17°, the
two modes of instability were found to coexist in
this zone of continuous transition. Their experimental
finding has led to many analytical studies on the vor-
tex instability for such a flow configuration.

In most of the analytical studies [3—6] on the vortex
mode of instability of laminar flow over inclined
heated plates, the main flow and thermal fields
employed in the analyses were approximated by the
similarity solution for a vertical flat plate ; that is, the
normal component of the buoyancy force that induces
the streamwise pressure gradient in the main flow was

neglected. This approximate analysis yielded con-
siderable errors in the critical Grashof numbers when
the angles of inclination from the horizontal are small,
as was reported in a recent study by Chen and Tzuoo
[10] who employed a new main flow solution for the
non-similar boundary layer in their analysis. Their
study is an improvement over the previous analyses,
but as in the other earlier studies the streamwise
dependence of the disturbances was not taken into
account. Thus, in all of the analytical studies [3-6, 10,
11], a linear parallel flow model is employed, in which
the amplitude functions of the disturbances are
assumed to be independent of the streamwise co-
ordinate. The parallel flow analysis has provided criti-
cal Grashof numbers that are two to three orders of
magnitude lower than the experimental values. There
is strong evidence from recent studies on the vortex
instability of natural convection flow over a horizon-
tal flat plate [15] and the vortex instability of forced
convection flow [16-18] to indicate that the non-par-
allel flow analysis will yield more realistic predictions
of the instability characteristics, when compared with
experimental data, than the parallel flow analysis. This
has motivated the present study.

In the present study, attention is focused on the
vortex instability of natural convection flow over
inclined, upward-facing heated plates by employing
the non-parallel flow model in which account is taken
of the streamwise variation of the disturbances. The
surface temperature of the plate is treated as non-
uniform and varies as 7\, (x) — T, = Ax". Inthe analy-
sis, the disturbance quantities are properly scaled and
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@ dimensionless wave number of
disturbance, aX = %¥?

D partial derivative with respect to #
f reduced stream function,
Y (x, p)/[Sv(Gr cos ¢/5)'7]
g gravitational acceleration
Gr,.  local Grashof number,

GPIT(x) =T Jx*/v?
Gr,  Grashof number based on L,

gBIT(L)— T, ]Lv?

k thermal conductivity
L characteristic length
n exponent in the power-law variation of

the wall temperature

Nu, local Nusselt number

P disturbance pressure

P mainflow pressure

Pr Prandtl number

Uw local surface heat flux

t dimensionless amplitude function of
temperature disturbance

t disturbance temperature

T main flow temperature

u,v,w dimensionless amplitude functions of
velocity disturbance in the x-, y-, z-
directions, respectively

W, v, w’  streamwise, normal, and spanwise
components of disturbance velocity

U,V streamwise and normal velocity
components of main flow in the x-, y-
directions, respectively

X, y,z streamwise, normal, and spanwise

coordinates

X, Y,Z dimensionless streamwise, normal,
and spanwise coordinates, defined,
respectively, as x/L, y/(eL), z/(eL).

NOMENCLATURE

Greek symbols

o dimensionless wave number of
disturbances, 27/4

B volumetric coefficient of thermal
expansion

3 dimensionless parameter,
(Gr,cos p/5)~'*

n pseudo-similarity variable,
(¥/X)(Grcos /5)"*

0 dimensionless temperature,

(T=T,)/[Tx)—T,]
thermal diffusivity of fluid
dimensionless wavelength
dynamic viscosity of fluid
kinematic viscosity of fluid
non-similarity parameter,
(Gr.cos ¢/5)"* tan ¢
density of fluid

function, du/d¢

function, 0t/0¢

local wall shear stress
angle of inclination from the horizontal
stream function

function, ¢v/dé.

O~

geep N

Superscripts
+ dimensionless disturbance quantity
— scale quantity defined by equation (20)
* critical condition or dimensioniess main
flow quantity
resultant quantity.

Subscripts
0 dimensionless amplitude function
w condition at the wall
0 condition at the free stream.

the resulting partial differential equations for the dis-
turbance amplitude functions, along with the bound-
ary conditions, are converted into an eigenvalue prob-
lem by employing either the local similarity (three-
equation) non-parallel flow model or the local non-
similarity (six-equation) non-parallel flow model. The
eigenvalue problem for each model is solved numeri-
cally by an efficient finite-difference method [19]
in conjunction with Miiller’s shooting iteration
technique.

Numerical results of interest, such as the neutral
stability curves, critical Grashof numbers, and critical
wave numbers are presented for fluids having Prandtl
numbers of Pr = 0.7 and 7 over the inclination angles
from the horizontal, 0° < ¢ < 70°, and a range of the
exponent values, —1/3 < n < 1. The present results
from the local similarity and the local non-similarity
non-parallel flow models are compared with those

from the previous studies based on the parallel flow
model and with available experimental data.

ANALYSIS

The main flow and thermal fields

As the first step in the analysis of the vortex insta-
bility of the flow, attention is directed to the main flow
and thermal fields. Consider an inclined flat plate
which makes an acute angle ¢ from the horizontal,
with its heated surface facing upward in an otherwise
quiescent fluid at temperature T,,. The physical co-
ordinates are chosen such that x is measured from the
leading edge of the plate and y is measured normal to
the plate. The surface temperature of the plate varies
as T,(x)— T, = Ax" where A4 and the exponent n are
real constants. Under the assumption of constant fluid
properties and using the Boussinesq approximation,
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the governing conservation equations for the main
flow and thermal fluids can be written as [20]

"+ m+3)F —2r+ D)+ E0

+ é [(2—n)119+(4n+2) Jmedn

* 00 of 5
+(n+3)fj ézdr]:|= (n+3),§|:f/aj; - ,,ép M
0"+ (n+3)Pr f0'—5n Pr {0

00 of |
:(n+3)Prf|:f/%—9/5§ 2

f1E0) =0, f(0+Edf(£.0)/0¢ =0,
J(€0)=0, 60 =1, 0(w0)=0 @)

where the pseudo-similarity variable n(x, y), the non-
similarity parameter £(x), the dimensionless stream
function f(&, i), and the dimensionless temperature
(¢, n) are defined, respectively, as

n = (y/x)(Gr,cos ¢/5)""°,
E(x) = (Gr cos ¢/5)'"* tan ¢,
Sf(&m) = ¥(x, y)/[5%(Gr, cos /5)'°],
&) = (T—T)H/[Tu(x)—T.,] @

with Gr, = gp[T.(x)— T, ]x*/v? denoting the local
Grashof number and the angle ¢ being measured
from the horizontal. The non-similar parameter £(x)
measures the combined effects of buoyancy force
(Gr,) and inclination angle (¢) on the flow and heat
transfer characteristics. In equations (1)-(3) the
primes stand for partial differentiations with respect
to # and Pr is the Prandtl number. Other notations
are as defined in the Nomenclature.

Equations (1)-(3) were solved by an efficient finite-
difference method [19] in conjunction with the cubic
spline interpolation scheme to provide the main flow
quantities that are needed in the instability cal-
culations and to provide other physical quantities,
such as the local Nusselt number Nu,, the local wall
shear stress t,, and the axial velocity distribution .
In terms of the dimensionless variables, these quanti-
ties can be expressed, repectively, by

Nu (Gr,cos ¢/5)" ' = —0'(&,0),
1, (X*/50)(Gr, cos $/5) ™ = f7(£,0),
(ux/5v)(Gr cos ¢/5)"*° = f'(¢,n). %

It is noted here that the case of uniform wall tem-
perature (UWT) corresponds to n = 0.

Formulation of the stability problem

In the present study, the linear non-parallel flow
stability theory is employed in the analysis. In exper-
iments [1, 2] the vortex rolls have been found to be
unchanging with time and periodic in the spanwise

direction. Thus, the disturbance quantities for velocity
components ', v’, w', pressure p’ and temperature ¢’
are assumed to be a function of (x, y, z), independent
of time. These disturbance quantities are super-
imposed on the steady, two-dimensional main flow
quantities U, ¥, W = 0, P and T to obtain the follow-
ing resultant quantities U, ¥, W, P, and T:

U(x, v,z) = Ulx, »)+u'(x,y,2)

V(x,y,2) = V(x, p)+0'(x, y,2)

W(x,p,2) = wi(x, ,2)

P(x,y,2) = P(x, ) +p'(x, ,2)

T(x,y.2) = T(x, )+ (x, y. 2). (6)

Thus, the disturbance quantities are considered to
be dependent on the streamwise coordinate x, in
addition to the normal (y) and spanwise (z) co-
ordinates. This is in contrast to most previous studies
in which the disturbances are taken to be independent
of x. The resultant quantities given by equation (6)
satisfy the continuity equation, the Navier-Stokes
equations, and the energy equation for an in-
compressible, three-dimensional steady fluid flow.
Substituting equation (6) into these equations, sub-
tracting the two-dimensional main flow, and linear-
izing the disturbance quantities, one can arrive at the
following disturbance equations:

u OV Ow

a‘l’(,}*}yﬁ"‘o;;z":o (7)
AU 00U a1
“ox Ox vﬁy dy ~ pox
+wW2u' +gBsingt  (8)
ov ov’ ov o’ 1dp’
Ay A 7L
u6x+(6x+ 6y+ Jy p Oy
+vW2' +gBcos ot (9)
ow’ ow’ 1 dp’ .
Ua‘i‘V@——;aZ-{—VVW (10)
oT or oT ot
W+ U— 0 — + V=V  (11)

dx ox dy dy

where V? = 3%/6x?+0?/0y*+0%/62% is the Laplacian
operator.

Since the disturbances are confined within the
boundary layer of the main flow, the so-called bottling
effect by Haaland and Sparrow [4], the disturbances
will have length scales different from those of the
main flow field [12, 13]. To verify this, the disturbance
equations are first nondimensionalized by using the
length and velocity scales of the main flow. The co-
ordinates are scaled as

x y z

X—L, Y—eL’ Z_eL (12)

where & = (Gr, cos ¢/5)"*and Gr, = gB[T.(L)—T..]L*/
v? is the Grashof number based on the character-
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istic length L(x). If L = x, then Y = 5 and Gr, = Gr,.

Other main flow quantities are scaled as

Us’L
v v

T—T,

U* = = ——
Tw(x) - Tx

(13)

where U*, V* and @ and their derivatives with respect
to X and Y are of the order of 1. Similarly, the dis-
turbance quantities can be scaled as

well v'e’L we’l
ut = , vt = , wth = ,
v v v
1312 ’
, _peL . t
= ot = (14)
Hy Tw(x)_TL

where u*, v, wt, p*, and ¢* and their derivatives

with respect to X and Y are of the order of ¢.

Substituting the above dimensionless variables
from equations (12)—(14) into equations (7)—(11) one
arrives at

E vt ow?t —0 15
tox Yoy Tz T (13
LUt et aut o
* R V*
ax TVt Y ey
B ap+ 62u+ + 62u+
=—tox tY aY?
~2o 4
—Z; + tangrt (16)
* dvt oV* ov*
+ * +A_A *
&u X+U 6X+ aY+V ¥z
. opr | Létt 62 *
=Ty YT T ave
62U+
+ogr ot (1)
aw owt  apt L odwt
* * — A 2
Ux TV %y oz TV ax?
awt 8wt
o0 ort v* o0 ort
. *_ _ *_
otV t v T oy
ot ont

ot
Syt TZZ] (19)

l 2
‘EP
The terms (v*/e) 0U*/@Y and (5/¢) tan ¢¢* in equa-
tion (16), the term 5¢% /¢ in equation (17), and the
term (v*/e) 00/8Y in equation (19) are larger than the
other terms in the corresponding equations by at least
an order of (1/¢). This means that the (X, Y, Z)
variables as defined in equation (12) are not the appro-
priate normalization scales for the disturbances.
Therefore, by rescaling the coordinates for the dis-
turbance quantities and the disturbance pressure with
the form

ax*?

XY, Zp7)=(X,Y,Zp" ) '? (20)
one has
dut vt dwt _0 91
ax Tar Tz @h
N 12 *ﬁu+ +7"i 12 *6u+
eu Fra +& U ox +v 3y +e'°V a7
a-+ 82u+ 62u+ a2u+
R R AR
(22)
vt 0 pt
2, + ]/ZU*‘- _____ ‘I,r’2 *
(7} ax + ar +¢&v 37 +¢& a7
apt o*vt 9t ot
2

oy TV axr tevr T oz

ow™ a
2% " 127/ %
e'c U 6A7+' V o7
3 813++ ,0twr otwth 2wt 4
=tz e et Tz Y
00 L0 +8() 2 *Bt
eu” 5}—{-? U ox ﬁ/‘*_ V Fia
82t+ 62t+ 62t+ 55
=m|fmtam taz | @

Because the terms edut/0X, £20pt/oX, £20%u*/
0X? 20wt [oX?, 20wt )0X? and £°0°t/8X? in
equations (21)—(25) are smaller than the rest of the
terms in their respective equations, they can be
omitted. The omission of these lowest order terms
in the disturbance equations is consistent with the
level of approximation of the main flow. With the
above-mentioned terms deleted and by making use of
equation (20), the disturbance equations are reduced
to

A+

v ow?

¥tz =0 (26)
L oU* out oU* dut
ou™ *7 s+ 2~ *
u* e +U +(Gr,cos ¢/5) v oY +V £3%
62 + 62 + s
t/ +
=2y + 77 +5(Gr, cosp/5) " tangpt™  (27)
av* ovt ov* vt
— /5, + * R *____
(Grocos ¢/5) " Pu ox +U Fha +v 3y +V oY
apt St dv” 1/5 4+
57+ ayr + azz T3(Gricos ¢/t (28)
awr o owt gpt Owt ot
" * . 4
Cx tVay szt Yoz @
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00 ort o0
w ol +(Grycos ¢/5)' v

ort
*
ax TV ax +v

oY Y

24+ 24+
Pr| 0Y oz

Next, the pressure terms in equations (28) and (29)
are eliminated by cross differentiation and subtrac-
tion. The resulting equation is then differentiated
with respect to Z once and the substitution
ow*/0Z = —ovT/0Y from the continuity equation is
employed to remove the terms involving the function
w?* and its derivatives. This sequence of operations
will yield three equations for the disturbance quanti-
ties ", v*, and ¢*. For the non-parallel flow model
considered here, these quantities are expressed as

W0t %) =[ue(X, V), 00(X, Y), 1o(X, Y)]exp (ie Z)
(1)

where « is the dimensionless azimuthal wave number
of the disturbances. Thus, the longitudinal vortex rolls
are taken to be periodic in the spanwise Z-direction,
with the amplitude functions depending on both X
and Y.

Substituting equation (31) into equation (27), the
combined form of equations (28) and (29) as
described above, and equation (30), along with intro-
ducing the coordinate transformation from (X, Y) to
(X, n) through the relationship

0
Y=X", =X,
T oy on
¢ 0 817 0
Y= — — 2
oY o 67] (32)
and letting

al=a’ XY, u=uy v=uv, t=1X"" (33)

one obtains the following system of partial differential
equations for the disturbance amplitude functions u,
v,and ¢:

du
D?u+d,Du+du+dww+de=5"'X—

o 34)
D4v+17lD3u+52D21J+b~3DU+540+55u+5(,t
= 5f X (D )+5f”X (Dv) So 2f)( 35)
D2t+d\Dt+drt+dsu+dp = 5Prf XEX. (36)
The corresponding boundary conditions are
u=v=Dv=t=0 atp=0and ©. (37)

In equations (34)—(36) the coefficients &,,...,d,,
b,,....b,,and d,,...,d, are the mainflow quantities
that are functions of (£, n). These coefficients will
be defined later. Also, D* stands for the kth partial
derivative with respect to 5. The boundary conditions
(37) arise from the vanishing of the disturbances at

the wall and in the free stream. The condition Dv = 0
results from the continuity equation (26) along with
w=0atn=0and .

Next, since the mainflow and thermal fields are
expressed as functions of (£, %), it is convenient to
express the disturbance amplitude functions u, v, and
¢ also as functions of (¢, n). From the (X)) relation-
ship, one has

0 0 d¢

X

o ddd 66r] 3.0
ax“aax T

3,0 20
dnox — 5°a¢

—. (38

=55 (38)

In terms of (&, ), equations (34)-(36) reduce to
D2u+a*Du+ au+atv+akt = 3¢ gaf 39)

D*v+5*D3 0+ b*D 0+ b*Do+biv+ btu+ bt

—3f€f€(Dzv)+3f”é (Dv)— 3a2f€* (40)

0t

D2t+d*¥Dt+d¥t+diu+div = 3Prf5 (41)
along with boundary conditions given by equation
(37). The coefficients in equations (39)—(41) are
defined by

at = 3f+3£af]oc,
at=2nf"—f ~a*—3Eaf"[0L,
a¥ = —5("(Gr,cos ¢/5)'*, af=5¢,
bY = 3f+380fj0¢, b} =5f"—20>+3E0f"[0E,
b% = 2" =3’ (f+£8f]00),
by = o’ +o’2nf"—f =3 f[00),
b% = (2*/5)(Gr,cos ¢/5) ™ " (6f—2nf"

—4nf" + 120 Of[0E —12& 9f]0% —9&% 07108,
b¥ = —35a*(Gr,cos ¢/5)"",
dt=3Pr(f+£0f]a8), d}=Prf—o’,
d% = (Pr/5)(2nb"—3£ 00/0%),

d% = —Pr@'(Gr,cos¢p/5)'"°. (42)

Equations (39)-(41), along with boundary con-
ditions (37), represent the mathematical system for
the stability problem. Since equations (39)—(41) are
partial differential equations, the boundary condi-
tions as given by equation (37) are not sufficient if the
& derivatives of u, v, and ¢ are not set equal to zero.
Two of the simple methods that can be used to solve
such a system of equations are the local similarity and
the local non-similarity methods [21, 22]. It is noted
that when the terms on the right-hand side of equa-
tions (39)—(41) are deleted, the resulting equations
along with boundary conditions (37) provide a system
of three equations for the local similarity non-parallel
flow model (the three-equation model). To obtain a
system of equations for the local non-similarity non-
parallel flow model, one first introduces
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~ - -
ou ov ot

0-:675’ (U=%, T=&.

Equations (39)—(41) and (37) are then differentiated
with respect to & once to obtain equations for o, w,
and 7. If the terms involving do/d&, dw/0¢&, and 0t/0¢&
in these equations are neglected (i.e. truncated), one
can arrive at the following system of homogeneous
‘ordinary differential equations’ for the disturbance
amplitude functions «, v, 1, 0, w, and 7:

43)

D2u+4a Du+a,u+aw+ast+aso =0 (44)
D+ b,D*+b,D%+b;Do+bo+bsu
+bet4+b,D’w+b,Do+bow =0 (45)
Dt+d,Dt+dyt+dyu+do+dst =0 (46)
D26 +e,Do+e,0+e;0+e,74+e5Du
+eutevtegt =0 (47)
D*o+f,D*w+f,D*w+f;Dw
+faw+fo+fet+ D0+ fD
+Do+flov+fu+fiat =0 (48)
D’t+¢g,Dt+g,t+g:6+g.w+gsDt+gqt
+gutg =0 (49)
with the boundary conditions
u=v=Dr=t=c=w=Do=1=0
atn = 0and oo. (50)

The coefficients in equations (44)—(49) are defined in
the Appendix.

The system of coupled differential equations (44)—
(49), along with the homogeneous boundary con-
ditions (50), now constitutes an eigenvalue problem
of the form

E(x, Gr; ¢, Pr,on) = 0. (5hH

This is the local non-similarity non-parallel flow
model (the six-equation model).

For given values of the exponent n, Prandtl number
Pr, and inclination angle ¢, the value of wave number
a satisfying equation (51) is sought as the eigen-
value for a prescribed value of the Grashof number
Gr, or the non-similarity parameter ¢ = (Gr, cos ¢/
5)%3 tan ¢.

NUMERICAL METHOD OF SOLUTIONS

The system of equations for the main flow and ther-
mal fields, equations (1)—(3), was solved by a finite
difference scheme in conjunction with a cubic spline
interpolation procedure similar to, but modified from
that described in ref. [19] to provide the main flow
quantities f, f7, ", 0, 8, and their partial derivatives
with respect to ¢ that are needed in the stability com-
putations and in the determination of the local Nusselt
number and the local wall shear stress. The stability
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problem, either consisting of equations (39)-(41) with
their terms on the right-hand side deleted and equa-
tion (37), the three-equation local similarity non-par-
allel flow model, or consisting of equations (44)—(50)
for the six-equation local non-similarity non-parallel
flow model, was solved by a finite difference scheme
along with Miiller’s shooting method. The solution
method parallels that described in ref. [19] and, to
conserve space, is not repeated here.

To proceed with the numerical calculations of the
stability problem, the boundary conditions at 4 = n,,
need to be approximated by the asymptotic solutions
of equations (39)—(41) with their terms on the right-
hand side deleted, the three-equation model, or of
equations (44)—(49) for the six-equation model at
n =1, (i.e. at the edge of the boundary layer). In the
six-equation model, since the mainflow quantities f”,
S7, 0, (r, and their ¢ derivatives are zero at 5 =17,
the asymptotic solutions for u, v, ¢, o, w, and 7 at
n = n,, can be obtained as

uy=exp(—mmn.), us=exp(—rm,), u;=u,=0,

vy =exp(—an.), vy=cexp(—mny,),
ty=exp(—rm.), ti=th=1t,=0,

Glzcxp(_mr’%)7 UBZCXP(_"'Ix)’ g, =U4=09

w, :05 wlzexp(_m”m)’

w; =exp(—rn, ), w;=n,exp(—mn,),

Ty=exp(—m.), T,=1,=1,=0 (52)
where

r={~PrC+[(PrC)*+4e°'?})2

m={—C+[C*+4a%]"?})2 (53)

with C = —3f(&.n..).
At any n location, the solutions for u, ¢, t, o, w,
and 7 are written as

u(,n) = Kyu (&) + Kyua(E.n)
+ Ksu3 (& m) + Kaua(E,n)
o(&my = Ko (& )+ Ky (Som)
+ K3v3(8, n) + KavalE, 1)
(&) = K1, (&, m)+ Ky15(8, 1)
+ K6 m + Kata (&)
a(C.m = K,0,(&,m+ K028 1)
+Ky03(¢, 1)+ Kaoa (S, 1)
(&) = Ko, (& n)+K,w,(&. 1)
+ Ks05(8,m + Kaw (S n)
€,m =Kt (&, M+ Kt (dn)

+K3t3(8m+ Kawa(&om)
(54)

where K|, K,, K;, and K, are constants. In the three-
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equation local similarity model, the asymptotic solu-
tions for u, v, and ¢ at n = 5, can be obtained in the
same manner as shown in equations (52).

The stability problem is solved as follows. With a
preassigned value of », the main flow solution is first
obtained for a given Prandtl number Pr and a fixed
non-similarity parameter ¢ = (Gr, cos ¢/5)"° tan ¢.
Next, with the angle ¢ selected, the Grashof number
Gr, = (5/cos ¢)(éftan @)° is specified. With this
known value of Gr, and a guessed value of the wave
number « as the eigenvalue, the finite difference form
of equations (39)—(41) with their terms on the right-
hand side deleted, the three-equation model, or the
finite difference form of equations (44)—(49) for the
six-equation model is numerically solved from n =0
to 1., ending with the asymptotic solutions for u, v,
t at n = n, for the three-equation model or for u, v,
t, 0, o, and 7 at n = n,, for the six-equation model.
The guessed eigenvalue « is then corrected by Miller’s
shooting method until the boundary conditions at the
wall (y =0) are satisfied within a certain specified
tolerance. This yields a converged « value as the eigen-
value for the given values of n, Pr, ¢, and Gr,.

After some experiments with the numerical solu-
tions for the three-equation model, a step size of
An = 0.01 and a value of 4., = 10 were found to pro-
vide accurate numerical results for both the main flow
and stability calculations for all inclination angles ¢.
As for the numerical solutions of the six-equation
model, a step size of Ay = 0.01 and a value of ., = 10
were also found to be sufficient for all inclination
angles ¢ larger than 10° for Pr=7 and 15° for
Pr = 0.7. However, for smaller angles of inclination,
a smaller step size An is needed to provide accurate
stability results, although a step size of Ay = 0.01 and
a value of #,, = 10 were sufficient to provide accurate
numerical results for the main flow. This was verified
by using a supercomputer with a larger memory
capacity.

RESULTS AND DISCUSSION

To determine the stability and instability domains
and to obtain the critical values of Grashof number
(i.e. the minimum Grashof numbers for the incipiency
of the vortex instability), neutral stability curves (i.e.
the Grashof number vs wave number curves) were
obtained. Numerical computations were first per-
formed for the three-equation non-parallel flow
model. The neutral stability curves for angles of incli-
nation ¢ ranging from 0 to 70° from the horizontal
with n =0 (the uniform wall temperature, UWT,
case) are plotted in Fig. 1 for fluids having Prandtl
number of Pr = 0.7 and 7 which are typical for air
and water, respectively. The results for ¢ = 0° (i.e. the
horizontal flat plate) are taken from ref. [15]. It can
be seen from Fig. | that for a given Prandtl number,
the neutral stability curve shifts right-upward with
increasing angle of inclination from the horizontal, ¢.
That is, the flow becomes more stable to the vortex

8
10
Nonparallel Flow (3 Egns)
10’} 70° |

F1G. 1. The neutral stability curves from the three-equation
non-parallel flow model, uniform wall temperature (UWT,
n=0), Pr=0.7and 7.

mode of instability as the angle of inclination increases
from the horizontal toward the vertical orientation.
For a vertical flat plate, the critical Grashof number
from the vortex mode of instability becomes infinity.
This is to be expected, because at the vertical orien-
tation there is no buoyancy force component normal
to the plate and hence the vortex instability of the flow
does not take place.

For the three-equation non-parallel flow model, the
critical values of the non-similarity parameter
& = (Gr,cos ¢/5)"* tan ¢ (denoted by &*), the critical
Grashof numbers Gr¥, and the corresponding critical
wave numbers «* from the present calculations are
listed in Table 1 for the n = 0 (UWT) case.

The neutral stability curves from the six-equation
non-parallel flow model for the case of n = 0 (UWT)
are plotted in Fig. 2 for different inclination angles,
¢. The results for ¢ = 0 (i.e. the horizontal flat plate)
are also from ref. [15] since the six-equation model
reduces to the three-equation model when & = 0 (i.e.
¢ = 0°). It is noted here that to save the computation
time and cost for the six-equation model, neutral sta-
bility curves were not obtained for inclination angles
¢ < 15°for Pr = 0.7 and for ¢ < 10" for Pr = 7. This
was because a smaller step size, A < 0.01 (i.e. a larger
storage space for computations), was needed to obtain
accurate results for the small angles of inclination. To
cope with the numerical difficulties associated with
this, however, one can employ an interpolation
method to obtain the results between the small angles
of inclination and ¢ = 0°, because accurate numerical
results for ¢ = 0° are available in ref. [15]. This can
be seen and expected from figures of critical Grashof
number vs angle of inclination, to be presented later.

To compare the results between the six-equation
and the three-equation non-parallel flow models,
representative neutral stability curves for different
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Table 1. Critical values of non-similar parameter, Grashof number, and wave number; three-equation
local similarity non-parallel flow model; uniform wall temperature (UWT, n = 0)

Pr=20.7 Pr=17
(deg) & Gr¥ a* & Gr¥ a*
0 0 834.5 0.68803 0 56.3 0.94275
5 0.27524 1547 0.77197 0.16931 136.2 1.1402
10 0.61494 2619 0.83395 0.39624 290.9 1.2815
15 1.0271 4284 0.88765 0.69138 592.0 1.4068
30 2.8802 17838 1.0437 2.1448 4085 1.7839
45 6.5671 86368 1.2442 5.0923 24213 2.2486
60 15.547 582680 1.5273 12.247 176 744 2.7247
70 32.387 3327371 1.8299 25.571 1020907 3.2059
10° . : : 6
80° 700 - ~— 7’ 10 " ' " ) )
10} ‘ “i/so" 107
e e ,f’ 5°
105 30 45 \/ ‘ ] 5
10° & S Pr=07 ---ecemeeeee 1 Gr;
Pr=7 5
L\ — w0}
10 \\) 10° ] )
s 10
=0 e
103 ------------ sl 1 3
=0 107 e Pr=07
(UWT) M (UNT)
2 o n=0 (UWT.
10°t ¢-0 1 i
101 Nonparsllel Fiowts £qns) . ﬁﬁﬂﬂ:ﬁ:ﬁ:i gg:g Egﬂif ............
0 0.5 1 1.5 2 10" . - -
0 0.5 1 1.5 2 2.5 3
a o

F1G. 2. The neutral stability curves from the six-equation
non-parallel flow model, uniform wall temperature (UWT,
n=20), Pr=0.7and 7.

inclination angles for the n = 0 (UWT) case are shown
in Fig. 3 for Pr =0.7 and in Fig. 4 for Pr =7. One
can see from these two figures that the six-equation
non-parallel flow model gives rise to a larger critical
Grashof number than that of the three-equation
model, but at a smaller critical wave number. The
neutral stability curves for the various » values,
n=—1/3,0 (UWT), 1/3, and | are compared in Figs.
5 and 6 for Pr = 0.7 and 7, respectively. In addition,
the critical values of the non-similarity parameter
&= (Gr, cos ¢/5)"° tan ¢ (denoted by &*), Grashof
number Gr¥, and its wave number a* are listed in
Tables 2 and 3 for n = —1/3, 0 (UWT), 1/3, and 1.
From Table 3, one can see that for Pr = 7, the critical
Grashof number increases with increasing value of
the exponent n for a given inclination angle ¢ < 60°.
However, for Prandtl number Pr = 0.7 (see Table 2),
the critical Grashof number decreases with increasing
value of the exponent » for angles ¢ that are large.
All of these trends can also be seen in Fig. 7 for
Pr =90.7 and in Fig. 8 for Pr=17.

Figures 9 and 10 show the critical Grashof numbers
from the present analysis based on the three- and six-
equation non-parallel flow models for Pr = 0.7 and

F1G. 3. A comparison of the neutral stability curves between
the three-equation and the six-equation non-parallel flow
models, uniform wall temperature (UWT, n = 0), Pr = 0.7.

g
10 + T r r

7 o Pr=7
10

n=0 (UWT)

6
10t

102 - @=0
Nonparallel Flow(6 Eqns) —
1 Nonparsllel Flow (3 EQNS)-----+-~==n
10 N N L N
0 1 2 o 3 4 5

FI1G. 4. A comparison of the neutral stability curves between
the three-equation and the six-equation non-parallel flow
models, uniform wall temperature (UWT, n =0), Pr=17.
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F1G. 5. The effect of n on the neutral stability curves, Pr = 0.7.
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F1G. 6. The effect of n on the neutral stability curves, Pr = 7.

7, respectively, for the n = 0 (UWT) case. Included in
the figures for comparison are results from the parallel
flow model reported in ref. [10]. It can be seen from
these figures that the critical Grashof numbers from
the three-equation non-parallel flow model are about
one order of magnitude larger than those from the
parallel flow model [10]. The critical Grashof numbers
from the six-equation non-parallel flow model are still
much larger than those of the three-equation model,
about one and two orders of magnitude larger for
Pr=10.7 and 7, respectively. From the comparison
among these three sets of results, it can be concluded
that the more rigorous non-parallel flow analysis,
which takes into account the streamwise dependence
of the disturbances, predicts critical Grashof numbers
that are larger than those predicted by the parallel
flow analysis.

It is interesting to compare the vortex instability
results from the present analysis based on the six-

Table 2. Critical values of non-similar parameter, Grashof number, and wave number ; six-equation local non-similarity non-parallel flow model; Pr = 0.7

¥

é*

*
x

n=1/3
hé

n=0(UWT)
Gr¥

Gr

n=—1/3

o+

¢
(deg)

0.62066
0.41128

1165
13926
18755
45083

222390
1474400
8641060

0

0.66405

934.0
15013
20394
52740

279690
2016120
11573600

0

0.68803
0.44852

15478
21092
57518
321700
2358900
13996 000

0

0.72046
0.48217

771.9
15579
27140
60 790
366430
2739350
16712800

1.3002
1.8642
3.4670
7.9346
18.719
39.198

0.43023

1.3199
1.8957
3.5775
8.3069
19.928
41.557

1.32798
1.90850

3.64009

1.3297
2.0072
3.6806
8.7680
21.188
44.726

15
20
30
45

0.45882

0.48426

0.50755

0.54939

0.53779

0.57303

0.60275

0.65620

0.80402

1.0014
1.1958

0.65768

0.70578

0.73903
0.93489
1.1286

8.54266
20.5638

0.80404
0.97396

0.85881
1.0427

60
70

43.1669
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Table 3. Critical values of non-similar parameter, Grashof number, and wave number ; six-equation local non-similarity non-parallel flow model; Pr = 7

n=1
*
: o*

Gr

Gr o* &*

n=1/3

é*

*
X

n=0(UWT)
Gr

*
x

Gr

n=—1/3

é*

¢
(deg)

0.90566

117.7
13939
33648

270480
1259010
5884570

16333200

0

0.92484

75.26
10 547
28 848
244 520
1234800
6312000
23355000

0.94275 0

56.33
8255
22751
213490
1145400
6200300
26 132000

0

0.98318

37.95

5259
15019
160379
923285
5387440
23573 500

0.50651
0.58341

0.85909

1.5511

4.9611
11.223
24.689
44.521

0.50686

0.81249

1.5041

4.8641
11.180
25.038
47.830

0.51072
0.58986
0.79437
1.0024
1.2583
1.5811

0.77364

1.43432

4.73181
11.0127
24.9484

0.52489
0.60652

0.70693

1.3200

4.4687
10.548
24.257
47911

10
15
30
45

0.58421

0.78854

0.78875

0.81386
1.0224
1.2909
1.5873

0.99986
1.2545
1.6996

0.99748
1.2545
1.5816

60
70

48.9086
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FiG. 7. The effect of » on the critical Grashof numbers,
Pr=20.7.

equation non-parallel flow model with previous
results from the parallel flow analyses and with avail-
able experimental data in the literature [2, 7, 8, 10, 11,
14, 23]. Such a comparison is made in Fig. 11 for
n =0 (UWT) and in Fig. 12 for n = 1/3 (~ UHF).
From these two figures it can be seen that the critical
Grashof numbers predicted by the six-equation non-
parallel flow model are about two orders of magnitude
larger than those from the parallel flow analysis, and
are in qualitative agreement with available exper-
imental values for air (Pr = 0.7) and water (Pr = 7),
particularly for the latter.

It is noted here that both the parallel flow model
and the three-equation non-parallel flow model
predict, for all angles of inclination, critical Grashof

4
10

3
10

10 R . R R L . .
0 15 30 4 60 75 D

¢ (degree}

FiG. 8. The effect of n on the critical Grashof numbers,
Pr=17.
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FIG. 9. A comparison of the critical Grashof numbers
between the non-parallel flow model and the parallel flow
model, uniform wall temperature (UWT, n = 0), Pr = 0.7.

numbers, Gr¥, that are larger for Pr = 0.7 than for
Pr =17 (see Figs. 11 and 12, and compare Figs. 9 and
10). On the other hand, the six-equation non-parallel
flow model yields smaller Gr¥ values for Pr=0.7 as
compared to Pr = 7 for most of the inclination angles
from the horizontal that are not very small (i.e. ¢ > 8°
for the case of n =0 and ¢ > 5° for the case of
n = 1/3). The reason for such a change in the ordering
of the Gr¥ vs ¢ curves among the various models for
the two Prandtl numbers is not clear and cannot be
explained. A thorough checking has concluded that it
is not due to numerical errors. In addition, it should

10 ™ T — T T

4 Nonparallel Flow(6 EQNS} e
10 Nonparallel Flow({3 EQNS} —=cucccman_on
Parallel Flow —_————
7
10
61
10
*
Gry
10
4
10
10° Pr=7
2 n=0 (UWT)
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1
10 " . L s " L

0 15 30 45 60 75 90

¢ (degree)

FiG. 10. A comparison of the critical Grashof numbers
between the non-parallel flow model and the parallel flow
model, uniform wall temperature (UWT, n = 0), Pr = 7.

217

10" ————————————

n=0 (UWT)
8l A
10 Pr=07 -----=--- '
Pr=7 o '
A
10 d I J
61
10 °®°
3
Gy,
10
4
10 Chen & Tzuoo
{(Parallel Flow)
3]
10 A Lock et al. (Air)
o0 Cheng & Kim(Air)
0 Tritton (Air)
2 0 Lloyd & Sparrow
10 vortex mode (Water)

8 Lloyd & Sparrow
I wave mode (Water)
10 o 2 s - " " "

0 15 30 45 60 75

¢ (degree)

Fic. 11. A comparison of the critical Grashof numbers
between analyses and experimental data, uniform wall tem-
perature (UWT, n = 0).

be mentioned that the critical Grashof numbers for
very small angles of inclination (i.e. ¢ ~ 0°) are not
expected to be very accurate, because the mainflow
solution based on the boundary-layer assumption
does not have good approximations when Gr, < 10°.
Because no experimental studies on vortex insta-
bility of natural convection flow on inclined flat plates
are available under the power-law wall temperature
variation except for the UWT case (n = 0) and UHF
case (n ~ 1/3), the present results from the non-par-
allel analysis, other than the cases of n =0 and 1/3,
cannot be verified directly with experimental data.

9
10 T T y r T T T

gl n=1/3 (UHF)
mt
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10 Present Study
-]

3|
10
® viiet (Air)
2 0 Viiet (Water)
10

Tien et al.
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F16. 12. A comparison of the critical Grashof numbers
between analyses and experimental data, uniform surface
heat flux (UHF, n ~ 1/3).
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CONCLUSION

In this paper, vortex instability of laminar boun-
dary-layer flow in natural convection on inclined flat
plates with a power-law variation in wall temperature
has been investigated analytically by employing the
linear non-parallel flow theory. Neutral stability
curves, critical Grashof numbers, and critical wave
numbers are presented for fluids having Pr = 0.7 and
7 over a wide range of inclination angles from the
horizontal, 0° < ¢ < 70°, for a range of cxponent
values » from —1/3 to 1. In general, it is found that
the flow becomes more stable to the vortex mode of
instability as the inclination angle from the horizontal
increases. The more rigorous non-parallel flow model,
which takes into account the streamwise dependence
of the disturbances, predicts critical Grashof numbers
that are larger than those predicted by the parallel
flow model. In addition, the six-equation non-parallel
flow model has yielded critical Grashof numbers that
are in close and qualitative agreement with available
experimental data for the cases of heating by uniform
wall temperature (UWT, n = 0) and uniform surface
heat flux (UHF, n ~ 1/3).

Itis also found that for a given value of the exponent
n, the critical Grashof number increases with increas-
ing Prandt] number for larger inclination angles.
However, this trend is reversed for smaller angles of
inclination. For Pr =7, at a given inclination angle
¢ < 60° the critical Grashof number increases with
increasing value of the exponent n. However, for
Pr = 0.7 the critical Grashof number decreases with
increasing value of the exponent n at larger inclination
angles, but this trend is reversed for small angles of
inclination (¢ ~ 0).
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APPENDIX
The coefficients in equations (44)—(49) are given by
ay,=Cy—a?, ay= —5"(Gr,cosg/5)"",
as=—3¢f",
by=—=C, b,=C—20,
by =2"+a°C,, by =o"+a’C,,
by = —(a?/5)(Gr.cos/5)~ °C;,
by = —Sa*(Gr cos p/5)"?,
by= =S b= 3Ef b= LS
dy= —PrC,, dy=Prf—a® dy=—(Pr/5)Cs,
d, = —Pr0’(Gr.cos §/5)"°, ds = —3Prif’,

ay = 5S¢,
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e,=—C,, e,=C,—C,+2f —a?,
ey = — 5" (Gr.cos/5)">, e, =5 es5=Cs eo=C,,
€7 = —5(Gr.cos ¢/5) " (Cy+17/8), ey =35,

fi=—C, f[i=2-20% fi=Ca?—f"=3EC,,
fo=a +a (Co+Co=2f"), fs=bs fo=bs
J1=Cs, fy=Cir [fo=2C—0aCs,
Sfro=0a2Cy, fiy = (@*/5)(Gr, cos $/5)”"*[(C3/&)— Cs),
Si2 = — (5 () (Gr cos §/5) ',
gr=—PrC,, g, = —o>—Pr(C,—3f"),
gs = —(Pr/S)Cs, g4 = —Pr&(Gr,cos¢/5)"°,
gs=PrCq, ge=PrCy, g,=—(Pr/5C,,,
gs = —(Pri)(Gr.cos ¢/5)'°C,,
where C (&, ) through C 5(¢, 1) are given by

(AD)

Ci&m = —3(/+Eaf00),
Coléom) = 2nf"—f" =38 0fJOL,
Cy(&m) = n’f"+2nf"—6f— 1208 0f"[0¢
+ 1280108 +9¢7 0 0¢2,
Co(&om) = 5" +388f7/6¢,  Cs(¢,n) = 3L 88/0— 208,
Co(&.m) = 62f10E+3 8711087,
Co(&m) =20 0f" (05 —40f |05 -3 8°[[0E?,
Cy(&,m) = 4n* f"10E — 100 o '[0E + 6 3f 16¢
+30& D*f16E2 — 120E 827 [8E2 +9E2 B3 f18E3,
Co(&.m) = of"J0, Crol&m) =8fJOE+3E0°f/3¢2,
C1(E, 1) = 380/0& —2n 00 OE + 3¢ 820/0&2,

Colln) =0 +L06/0¢, Ciéom =af"/08. (AD)

INSTABILITE THERMIQUE NON PARALLELE DE LA CONVECTION SUR DES
PLAQUES PLANES INCLINEES ET NON ISOTHERMES

Résumé—On étudie analytiquement en théorie linéaire, les caractéristiques de I'instabilité tourbillonnaire
de I’écoulement laminaire de couche limite, dans la convection naturelle sur des plaques planes inclinées,
chauffées par dessous, avec une température de surface variable comme T, (x) — T,, = Ax". L’écoulement
principal est bidimensionnel et on prend en compte la dépendance dans la direction de I’ecoulement des
fonctions amplitude de perturbation. On présente les courbes de stabilité neutre, les nombres de GRASHOF
critiques et les nombres d’onde critiques correspondants pour des fluides ayant Pr = 0,7 et 7, pour des
angles d’inclinaison 0° < ¢ < 70° a partir de I'horizontale, pour un exposant n entre —1/3 et 1. Pour un
nombre de PRANDTL et n donnés, '’écoulement est plus stable, vis-d-vis de I'instabilité tourbillonnaire,
quand l'angle d’inclinaison augmente. La dépendance des perturbations dans le sens de I’écoulement
conduit a une stabilisation de ’écoulement principal ce qui fait que les prédictions s’accordent qualitative-
ment avec les données expérimentales.

NICHTPARALLELE THERMISCHE INSTABILITAT BEI NATURLIC_.HER KONVEKTION
AN NICHTISOTHERMEN GENEIGTEN EBENEN FLACHEN

Zusammenfassung—Das Verhalten laminarer Grenzschichtstromungen im Hinblick auf Wirbelinstabilitét
bei natiirlicher Konvektion an einer von unten beheizten geneigten ebenen Platte mit verdnderlicher
Oberflachentemperatur (7, (x) — T, = Ax") wird analytisch mit der Theorie linearer L&sungen untersucht.
Dabei wird ein Modell fiir nichtparallele Strémung angewandt, bei dem die stationdre Hauptstromung
zweidimensional behandelt wird und Verdnderungen der Stérungsamplitude in Strémungsrichtung beriick-
sichtigt werden. Die Kurven neutraler Stabilitit wie auch die kritische Grashof-Zahl und die entsprechende
kritische Wellenzahl werden fiir folgende Bedingungen dargestellt: Prandtl-Zahl des Fluids (Pr = 0,7 und
7); Neigungswinkel (0° < ¢ < 70° gegeniiber der Waagerechten) ; Exponenten # (—1/3 < n < 1). Es zeigt
sich, daB bei gegebenen Werten der Prandtl-Zahl und des Exponenten n die Strdmung im Hinblick auf die
Wirbelinstabilitit stabiler wird, wenn der Neigungswinkel von der Horizontalen zunimmt. Weiterhin ergibt
das nichtparallele Strdmungsmodell mit lokaler Nichtdhnlichkeit eine groBere kritische Grashof-Zahl als
das Modell mit lokaler Ahnlichkeit. Die Ergebnisse der vorgestellten Untersuchung fiir nichtparallele
Strémung werden mit den entsprechenden Ergebnissen fritherer Untersuchungen an paralleler Strémung
und mit verfigbaren Versuchsdaten vergleichen. Die Verdnderung der Stérungen in Strémungsrichtung
fiihrt zu einer Stabilisierung der Hauptstrémung. Dies fithrt dann dazu, daB die vorgestellten Rechen-
ergebnisse qualitativ gut mit verfiigbaren Versuchsdaten iibereinstimmen.
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HEMNAPAJUIEJIBHASL TETIJIOBASI HEYCTONYUBOCTh
ECTECTBEHHOKOHBEKTHUBHOI'O TEHEHHMA HA HEU30TEPMHUYECKUX
HAKJIOHHBIX IMJIOCKHX IMIMACTUHAX

Annorams—Ha ocHOBe JINHEHHO# TEOPHH aHANMM3HPYIOTCA XapaKTEPHCTHKH BHXPEBOH HEYCTOHYMBOCTH
JIAMHHAPHOTO TEYEHHS B NMOTPaHMYHOM CJIOC B YCIOBHAX €CTCCTBEHHOH KOHBEKIMH Ha HarpeBacMbIX
CHHM3Yy HAKJIOHHBIX [UIOCKHX NJIACTHHAX NPH MEpEMEHHOH TemmepaType noBepxHoctH T (x) — T, = Ax".
AHaJM3 NMPOBOJUTCA ¢ HMCMOJb30BAHHEM MOJC/H HenapaJuleIbHOTO TEYeHMs, B KOTOPOH ycToiunBoe
OCHOBHOE TEYEHHE PACCMATPHBAECTCA KAK JIBYMEPHOE H YYHTHIBACTCH 3aBHCHMOCTb QYHKIHH aMIUTHTYAbI
BO3MYILIEHAS OT PacCTOsiHMsA BHH3 no motoky. [IpeacraBieHbl kpHBbIE HEHTPAJBHOTO PaBHOBECHS, a
Takxe KpuTHYeckde uncna I'pacroda u cOOTBETCTBYIOUIME KPHTHYECKHE BOJHOBBIE YHC/IA AJIS XKHAKOC-
el ¢ Pr=10,7 u 7 B Iana3oHe H3MeHeHHus yraa HakioHa 0° < ¢ < 70° OTHOCHTENBHO FOPH3OHTANIH B
MHTEepBaJjie H3MEHEHHs NIOKa3aHus cteneHd n oT —1/3 no 1. Ilpu nanubIx 3Ha4eHusx yucna IpasaTns n
nokasaresie CTENEHH n HAHAEHO, YTO TeYeHHe NPUOJIMKAETCA K BUXPEBOMY PEXHMY HEYCTOHYHBOCTH IO
MEpe YBEJMYCHHS YIJIa HAaKJIOHA OTHOCHTEJNBHO Tropu3oHTanH. Kpome Toro, mpHM HCnonb30BaHHH
MOJEJH JIOKATBHON HEaBTOMOAEIBHOCTH HeNMapaJUIeIbHOTO TeYEHHS MoJly4aeTcs GoJiee BHICOKOE 3HaYe-
HHe KpuTuyeckoro uncia I'pacroda, yeM B MOJCITH JIOKaJbHOH aBTOMOJENBLHOCTH HEMapasLIeIbHOTO
TedeHus. Pe3yiabTaThl aHaiM3a HeNapasUleNbHBLIX TEYCHHH CPaBHUBAIOTCA C JAAaHHBIMH, MOJYMEHHBIMH
paHee HAa OCHOBE aHAJIM3a NapaslieJbHBIX TEYEHHH, H C HMEIOLIMMHACA IKCNIEPUMEHTAJIBHBIMH PE3yJibTa-
TaMH. 3aBHCHMOCTL BO3MYILEHHH OT PacCTOAHMSA BHH3 [0 IIOTOKY NPHBOAMT K CTROHIH3aLMHd OCHOB-
HOTO MnoTOKa, Onarogaps 4eMy HabnmiogaeTcss KadyeCTBEHHOE COIJIaCHE MeXAy TEeOpPeTHYCCKHMH
pe3yJIbTATaMH H UMEFOIIMMHUCS IKCIEPHMEHTAJIBHBIMA JaHHBIMH.



